Calculations Policy

 September 2019

Alvechurch C of E Middlle School
Crown Meadow First School
Blackwell First School
St Andrew's First School

Addition

Mental Methods

These mental arithmetic skills need to be taught discretely and then regularly practised in mental maths sessions to develop fluency. See attached 'Sense of Number' document.

		MA2a: Counting On $\begin{gathered} 12+5=17 \\ 12+5 \end{gathered}$	MA2b: Counting On $\begin{aligned} & 57+10=67 \\ & 57 \\ & 57 \end{aligned}$	MA3: Number Bonds 	MA4: Double a Adjust $\begin{aligned} & 5+6=11 \\ & 5+5+1 \\ & 10+1=11 \end{aligned}$	MA5: Round a Adjust $\begin{gathered} 45+9=54 \\ 45+10-1= \\ 55-1=54 \end{gathered}$
	MAl: Portitioning $\begin{aligned} & 43+21=64 \\ & 60+4=64 \end{aligned}$	MA2a: Counting On $\begin{aligned} & 78+7=85 \\ & 78+7 \end{aligned}$	MA2b: Counting On $58+40=98$	MA3: Number Bonds $3+4+7=14$ 104	MA4: Double a Adjust $\begin{aligned} & 7+8=15 \\ & 7+7+1 \\ & 14+1=15 \end{aligned}$	MA5: Round a Adjust $\begin{gathered} 45+19=64 \\ 45+20-1 \\ 65-1=64 \end{gathered}$
	MAl: Portitioning $\begin{aligned} & 57+25=82 \\ & 70+12=82 \end{aligned}$	MA2a: Counting On 135 -	MA2b: Counting On $\begin{gathered} 534+300=834 \\ \|+300\| \\ 534) 834 \end{gathered}$	MA3: Number Bonds $\underbrace{43+9+7}_{50}+21=80$ θ.	MA4: Double a Adjust $\begin{gathered} 16+17=33 \\ 16+16+1 \\ 32+1=33 \end{gathered}$	MA5: Round a Adjust $\begin{gathered} 45+97=142 \\ 45+100-3 \\ 145-3=142 \end{gathered}$
	MAl: Partitioning $800+70+9=879$ \square.	MA2a: Counting Oñ $\begin{aligned} & 784+60=844 \\ & +60 \mid 844 \end{aligned}$	MA2b: Counting On	MA3: Number Bonds 4	MA4: Double 2 Adjust $\begin{aligned} & 37+38=75 \\ & 37+37+1 \\ & 74+\quad 1=75 \end{aligned}$	MA5: Round a Adjust $\begin{aligned} & 345+298=643 \\ & 345+300-2 \\ & 645-2=643 \end{aligned}$
	MAl: Portitioning $\begin{aligned} & 576+258=834 \\ & 700+120+14=834 \end{aligned}$	MA2a: Counting On	MA2b: Counting On	MA3: Number Bonds $\underbrace{84.56+c 3.27+21.44}_{66.00 \quad \mathrm{e} 3.27}=59.27$ 4 \qquad	MA4: Double \& Adjust $\begin{aligned} & 125+127=252 \\ & 125+125+2 \\ & 250+2=252 \end{aligned}$ $0 \quad=$	MA5: Round z Adjust $\begin{aligned} & 4645+1996=6641 \\ & 4645+2000-4 \\ & 6645-4=6641 \end{aligned}$
	MAl: Partitioning $4.73+2.21=6.94$ $6+0.9+0.04=6.94$	MA2a: Counting On $\begin{gathered} 43,826+30,000=73,026 \\ -30,000 \mid \\ 43,826 \quad 73,826 \end{gathered}$	MA2b: Counting On	MA3: Number Bonds	MA4: Double a Adjust $\begin{gathered} 4.5+4.7=9.2 \\ 4.5+4.5+0.2 \\ 9+0.2=9.2 \end{gathered}$	MA5: Round \& Adjust $\begin{aligned} & 45.2+49.9=95.1 \\ & 45.2+50-0.1 \\ & 95.2-0.1=95.1 \end{aligned}$

Year group	Objective and Strategies	Concrete	Pictorial	Abstract
Reception	Adding one/ one more	Use concrete resources to show how 1 object can be added. One more than 4 is 5	Draw more objects to show what has been added. One more than 3 is 4	
$\begin{gathered} \text { Reception } \\ \text { and } \\ \text { Y1 } \end{gathered}$	Combining two parts to make a whole			Just Year 1 $4+3=7$ (say: 4 plus 3 is the same as 7)
$\begin{gathered} \text { Reception } \\ \text { and } \\ \text { Y1 } \end{gathered}$	Starting at the bigger number and counting on	Reception use single digit numbers. $12+5=?$ Start with the larger number on the bead string, abacus, egg box or tens frame and then count on the smaller number 1 by 1 to find the answer.	Year 1 only $12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$\begin{aligned} & \text { Year } 1 \text { only } \\ & 5+12=17 \end{aligned}$ Place the larger number in your head and count on the smaller number to find your answer.

Reception and Y1	Knowing numberbonds to and within 10 from memory.	Use numicon to show pairs of numbers to make 10. Year 1 begin to use this knowledge to make numberbonds to 20. Use base ten/dienes, egg boxes, tens frames and cuisenaire to show numberbonds to 10 . Use unifix to make towers of 10: Record number sentence as: $\begin{aligned} & 9+1=10 \\ & 8+2=10 \text { etc } \end{aligned}$	Use a part-part whole diagram to complete the missing number. Use ten frames: 3+ \qquad $=10$, if you have 3 , how many more to make 10 ? Children to draw tens frames.	Reception - Verbal \qquad goes with \qquad to make 10 or \qquad and \qquad make ten. Year 1 $\begin{array}{ll} 0++_{-}=10 & 1+_{+}=10 \\ 2+_{\ldots}=10 & 3+_{\ldots}=10 \\ 4+\ldots=10 & 5+\ldots=10 \\ 6+\ldots=10 & 7+\ldots=10 \end{array}$
Reception and Year 1	Recognise and understand doubles and halves. Year 1 recall doubles and halves to 10 .	Use a range of concrete materials to explore what doubling and halving is. Recognise examples and nonexamples of doubles and halves.	molole memt	Double 3 is 6 or $3+3=6$ Half of 6 is 3 or half of $6=3$
2	Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10. Then add the rest to 10 .	Use pictures or a number line. Regroup or partition the smaller number to $3+9=$ make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10 ? $7+3=10$ How many more do I need to add on now? $10+1=11$

2	Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Then add on 7. Or....spot doubles to add first, then add on the third number. Or....start with the largest number and add on the next largest number and then the third number.	Put the 3 and 7 together and then add on the 5 .	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
2	Adding two, 2digit numbers by partitioning	$44+23=$ Make the numbers using Dienes. Add together the tens and then add on the ones. When manipulating numbers, group tens and ones into fives as a clearer visual representation for the children.	$44+23=$ Draw the tens and ones. Count the tens and then add on the ones.	Partition each 2 digit number into tens and ones using the part-part whole model. Add together the tens, add together the ones and then recombine.
2	Adding two, 2digit numbers using the column method- no exchanging	$24+15=$ Add together the ones first then add the tens. Use the base ten/Dienes. Step 2 Add the tens. 2 tens +1 ten $=3$ tens $23+14=37$	After practically using the base ten/Dienes children can draw the apparatus to help them to solve additions.	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +\underline{42} \end{array}$ Add the ones first and then the tens.

ADDITION						
Rec Part - a number of parts added together makes a whole Whole - a whole is made up of a number of parts Equal - say 'is equal to' or 'is the same as' 1 more than	Year 1 Numeral - how to write a number using digits Digit - 24 is a 2-digit number. The 2 represents the tens, the 4 represents the ones Sum - the total of one or more additions Total - the sum found by adding 10 more than.	Year 2 Commutative addition is commutative so $8+2=2+8$ Inverse - addition and subtraction are inverse operations so $7+3=10$ and $10-3=7$ Exchange- when adding ones if the total is greater than 10 we exchange 10 ones for a ten.	Year 3 Round and Adjust a mental strategy where one number is rounded to make the calculation easier and then adjusted e.g. $56+38$ is treated as $56+40$ and then 2 is subtracted to compensate Exchange and carry - when adding the ones in column addition if the total is greater than 10 we exchange 10 ones for a ten and carry to the tens column.	Year 4 Consolidation of terms learnt in previous year groups	Year 5 Integer - any of the positive or negative whole numbers Positive - any number greater than zero Negative - any number less than zero	Year 6 Consolidation of terms learnt in all previous year groups


```
MS1 - Manipulate the calculation (42-18 becomes 44-20)
MS2 - Round and adjust (52-19 becomes 52-20 + 1)
MS3 - Partitioning (45-12 becomes 45-10-2)
MS4 - Counting on (finding the difference)
MS5 - Counting Back
```

MS6 - Number facts (use what they know e.g. doubles, halves etc)

Subtraction

NOTE: When reading a subtraction question, use the vocabulary of calculation or equation and use 'subtract' when reading the symbol. Take away and find the difference are methods.

Year group	Objective and Strategies	Concrete	Pictorial	Abstract
Reception	Taking away one/one less	Use concrete resources to show how 1 object can be taken away.	Cross out drawn objects to show what has been taken away.	

1	Subtracting ones	Use concrete resources to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $14-5=9$	$18-3=$ $8-2=$
$1 \& 2$	Counting back	Make the larger number in your subtraction. Move the beads along your bead string or abacus as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track. Start at the bigger number and count back the smaller number showing the jumps on the number line. $57-23=$ \qquad This can progress all the way to counting back using two 2-digit numbers. This can also be represented using drawings of base ten/Dienes with subtracted tens and ones crossed out.	Put 13 in your head, count back 4. What number are you on?
1\&2	Part-part Whole Model	Link to addition- use the part-part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part?	Use a pictorial representation of objects to show the part-part whole model.	

		10-6 =		Move to using numbers within the part whole model.
2	Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Draw bars to find the difference between 2 numbers. Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. Find the difference in age between them. $\underbrace{13}$ Lisa \square	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
2	Subtracting two, 2-digit numbers by partitioning	44-23= Make the first number using Dienes. subtract the second number. Count what is left.	44-23= Draw the tens and ones. Cross out the second number. Count what is left.	$57-23=$ \qquad This can progress all the way to partitioning on a number line.
2/3	Column method -no exhanging	$75-42=?$ Use Dienes to make the bigger number then take the smaller number away. What's left? 32	Draw the Dienes or place value counters alongside the written calculation to help show the working out.	$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.

Vocabulary per year group:

Each year group should build on and consolidate previous year groups

SUBTRACTION

Rec Whole - a whole subtract any number of parts equals a part Subtract - to remove/take away a number of items from a group	Year 1 Subtract - to carry out the process of subtraction Minus - a name for the symbol '-" Difference - the answer to a subtraction.	Year 2 Inverse - addition and subtraction are inverse operations so $10-4=6$ and $6+4=10$ (it is NOT commutative) Exchange - when the number to subtract is smaller than the number we are subtracting from we exchange a ten into ten ones.	Year 3 Compensation - a mental strategy where one number is rounded to make the calculation easier and then adjusted e.g. $56-38$ is treated as $56-40$ and then 2 is added to compensate	$\text { Year } 4,5 \& 6$ Consolidation of terms learnt in previous year groups

Multiplication - Mental Arithmetic

MM (Mental Multiplication)
MM1 - Manipulate calculation (Using arrays to identify component multiplications).
MM2 - Factorising (12×3 becomes $6 \times 2 \times 3$)
MM3 - Reordering (numbers calculated in a different order $-9 \times 2 \times 5$ is the same as $2 \times 5 \times 9$)
MM4 - Partitioning (18×3 becomes $10 \times 3+8 \times 3$)
MM5 - Round and adjust (49×3 becomes $50 \times 3-1 \times 3$)

MM6 - Doubling (double 17 is equal to double ten + double 7)
MM7 - Doubling table facts (16×7 becomes $8 \times 2 \times 7$)
MM8 - Doubling up (36×4 becomes $36 \times 2 \times 2$)
MM9 - Multiply by ... then halve (86×5 becomes 86×10 then half)
MM10 - Jump (multiply by 10, 100 and 1000)

Multiplication

Year group	Objective and Strategies	Concrete	Pictorial	Abstract
$\begin{gathered} 1 \\ \text { and } \\ 2 \end{gathered}$	Doubling	Use practical activities to show how to double a number. Halves and doubles identified in a range of contexts, with a focus on equal halves. Shown on 10-frames and with Numicon.	Draw pictures to show how to double a number. Double 4 is 8 \square \square \square \square	Year 1 - double 6 is 12 (doubles to 10) Year 2 Partition a number and then double each part before recombining it back together.

				$\begin{array}{\|cc\|} \hline \text { M9b: Long Multiplication } \\ \times \quad 203 & \\ \times \quad 68 & \\ \hline 1624 \times 203) \\ +12180 & (60 \times 203) \\ \hline 13804 & \end{array}$

\mathbf{X} repeated addition
(2) Sense of Number Primory School

Division - Mental Arithmetic

MD1 - Halving - partitioning.
MD2 - To divide by 4 or 8 use repeated halving.
MD3 - Manipulate the calculation. Adapt the calculation to make it easier. E.g. $140 \div 20$ becomes $14 \div 2$
MD4 - To divide by 50 , divide by 100 and then double. $3200 \div 50$ becomes $(3200 \div 100) \times 2$
MD5 - To divide by 25 , divide by 100 and then double twice.
MD6 - To calculate fractions of numbers by dividing by the denominator and then multiplying by the numerator.
MD7 - To divide by 10, 100 or 1000 by moving digits to the right.

Division

\begin{tabular}{|c|c|c|c|c|}
\hline Year group \& Objective and Strategies \& Concrete \& Pictorial \& Abstract \\
\hline R \& 1 \& Halving \& \begin{tabular}{l}
Reception using concrete resources in a play context e.g. cakes onto plates. \\
Halves are introduced through splitting shapes in to two equal parts. This can then be done with cubes to introduce the concept of halving numbers. \\
It also provides a practical example of how halves and doubles operate as inverse calculations.
\end{tabular} \& \begin{tabular}{l}
Y1 \\
Draw pictures to show how to halve a number.

\square
\square
\square

Half of 6 is 3
\end{tabular} \&

\hline 2 \& Halving \& Use practical resources available. e.g. tens frames, egg boxes, dominoes, numicon \& $$
\begin{aligned}
& 1 / 2 \text { of } 14 \\
& \begin{array}{|lllll|ll|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$ \& Partition a number and then halve each part before recombining it back together.

\hline 34 \& Halving \& \& \& | $56 \div 4=?$ |
| :--- |
| Partition into 40 and 16 to divide each number by 4 . |

\hline
\end{tabular}

1,2	Sharing objects into groups		Children use pictures or shapes to share quantities. Think of the bar as a whole. Split it into the number of groups you are dividing into and work out how many would be within each group. Draw dots to Bar model shows relationship between whole/ represent initially. parts and makes links to division.$12 \div 4=3$12 3 3 3 3	Share 9 buns between three people. $9 \div 3=3$
3,4	Sharing objects into groups.	$\begin{aligned} & 96 \div 3=32 \\ & \text { (1) } \\ & \text { (2) } \end{aligned}$	A pictorial representation of the place value counters or dienes.	See short division(bus stop method as an abstract method for sharing).p28
R 1	Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects.	Y1 to draw	

2,3	Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. 10 shared into groups of $2=5$ groups $10 \div 2=5$ groups $12 \div 4=3$ Grouping strategy modelled with covered arrays and Numicon: how many [divisors] \qquad $20 \div 5=4$ 20 dots.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. 12 divided into groups of $3=4$ groups. Leading into using an empty numberline. $12 \div 3=4$ Bar model shows relationship between whole/ parts and makes links to division.	$\begin{aligned} & 30 \div 5=- \\ & \text { How many } 5 \text { s make } \\ & 30 ? \\ & 14 \div 2=- \\ & \text { How many } 2 \text { s make } \\ & 14 \text { ? } \end{aligned}$
23	Division as the inverse of multiplication	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rlr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 2=14 \\ & 2 \times 7=14 \\ & 14 \div 7=2 \\ & 14 \div 2=7 \end{aligned}$

DIVISION

Rec \& Year 1

Sharing - share equally a number of objects into a specified number of groups.
Divide - to carry out the process of division

Year 3, 4, 5 and 6

Dividend - the number that is being divided into equal parts
Divisor - for sharing: the number that it is being shared between. For grouping: the number in each group $\ln 15 \div 3,15$ is the dividend and 3 is the divisor
Quotient - the result of a division
dividend \div divisor $=$ quotient
Divisible - A whole number is divisible by another if there is no remainder after division
Remainder - the amount remaining after division
e.g. $29 \div 7=4 \mathrm{r} 1$

VISUAL REPRESENTATIONS

Reception

Objective	Visual representations								
Know 1 more/less in the range 1 100, focusing on bordering tens boundaries	Identify and show one more/less in different wa Example game: one more/less bingo.		Find mis focusing 28	g nu ten	ber track, 32				
With visuals, discern teens from tens	Organise large quantities in groups of 10 e.g. with egg boxes or pipe cleaners.	Use tee 		13	Identify and make 2 -digit numbers with dienes, showing in different ways.			Partition 2-di using place-v	mbers rds
Able to represent 110 in a range of ways, working out small quantities without counting all items	Immediate recognition of Numicon, 10 -frame images, tally charts, dot patterns and finger patterns.		Represent numbers on fingers in different ways.			Estimate position of numbers on blank number lines with different start/end numbers.			
Break down 1-10 in all possible ways, write number sentences using + , - and $=$	Subitizing games for regular and irregular dot patterns, with children visualising quantities in two parts.		Arrangement of 2 colours of items e.g. in egg box 10 -frame or with Numicon.				Introduction of part-whole model from individuals squares/items to bars.		

Objective	Visual representations
Represent and use number bonds and related subtraction facts within 20	10 -frames and 2 -colour number tracks show calculations bordering 10: 'how many to 10 , how many more?' Lead to use of blank number line. Equivalence shown with balance scales and dice patterns. Bar models used to show relationship between addition and subtraction.
Count in multiples of 2,5 and 10	100 -square with columns highlighted used to support counting. The Slavonic Abacus (iPad app 'Number Rack') used to visualise quantity when counting. Count in visual then hidden groups of 2,5 and 10. 5 people in each tent
Recognise and make one-half in a range of ways (discern examples from non-examples); identify onequarter	Half of a shape/capacity, number of objects, 10-frame half/double, half of length, half of an amount of money. Colour half of each whole shape: What is half of this amount?
Link the value of coins to a matching visual	Match value of coins to Numicon pieces, use Numicon to support calculations involving money.

VISUAL REPRESENTATIONS

Year 2

Objective	Visual representations	
Represent numbers 1100 in a range of ways, showing understanding of place value		Recognise amount on Slavonic Abacus, seeing tens and ones; find missing numbers on 100 -square.
Use different calculation strategies for adding and subtracting one and twodigit numbers	Calculation within 30 using 10 -frames, lead to use of number line, e.g. use egg-box 10 -frames and app 'I See Addition and Subtraction'. Model calculation using partitioning with dienes.	Bar modelling to show relationship between + and - (using words 'whole/parts'). Include spatial reasoning estimates.
Understand x as repeated adding, find related x and \div facts from a number sentence	Numicon and images of repeated quantities show Arrays show commutativity of multiplication. multiplication as repeated addition. Columns/rows circled to link to division.	Bar model shows relationship between whole/ parts and makes links to division.

Objective	Visual representations
Use efficient formal written methods for multiplication and division	Multiplication modelled using place value coins, leading to efficient written forms: The concept of 'How many [divisors] in [dividend]' shown using Numicon, part-hidden arrays and by making shapes with matchsticks. $20 \div 3$ (how many 3 s in 20 ?) and $20 \div 5$ (how many 5 s in 20 ?): 24 dots. How many rows?
Simple unit/non -unit fractions represented in a range of ways; different fractions compared including equivalence	Identify fraction of shaded shape; position fractions on a number line; use fraction cards to show equivalence and compare fractions.
Use quarters, halves and tenths as counting numbers going over 1	Modelled with fraction cards and on number lines.

Year 4

Objective	Visual Representations
Use efficient formal written methods for multiplication and division of 3-digit numbers	Division modelled with place value counters. Written multiplication represented by area model-links made between grid method and compact method.
Find equivalent fractions, calculate fractions of amounts (unit and non-unit fractions)	Fraction cards and Lego used to show equivalence. $\frac{3}{4}=\frac{12}{16}$ Fractions of quantities shown using place value counters and bar models, presented in stages.
Know decimal equivalents for quarters and halves, relating to division	Dividing length of a metre ruler into two/four equal parts.

Objective	Visual representations
Develop a range of strategies for division including efficient written methods	Division modelled with place value counters. Bar model used to reinforce 'how many [divisors] in [dividend]?'
Compare and order fractions, find equivalent fractions, add and subtract fractions.	Fraction cards used to compare, show equivalence and model calculations. Example: $3 / 4+1 / 2$
Find decimal equivalents for quarters, fifths and tenths, relating to division	Dividing length of a metre ruler into two/four/five equal parts.

VISUAL REPRESENTATIONS

Year 6

